"(Phys.org) -- The most accurate study so far of the motions of stars in the Milky Way has found no evidence for dark matter in a large volume around the Sun. According to widely accepted theories, the solar neighbourhood was expected to be filled with dark matter, a mysterious invisible substance that can only be detected indirectly by the gravitational force it exerts. But a new study by a team of astronomers in Chile has found that these theories just do not fit the observational facts. This may mean that attempts to directly detect dark matter particles on Earth are unlikely to be successful."
Thursday, April 19, 2012
Dark Matter Getting Cloudy
"(Phys.org) -- The most accurate study so far of the motions of stars in the Milky Way has found no evidence for dark matter in a large volume around the Sun. According to widely accepted theories, the solar neighbourhood was expected to be filled with dark matter, a mysterious invisible substance that can only be detected indirectly by the gravitational force it exerts. But a new study by a team of astronomers in Chile has found that these theories just do not fit the observational facts. This may mean that attempts to directly detect dark matter particles on Earth are unlikely to be successful."
Tuesday, April 17, 2012
The stellar source of the elements that compose us
Friday, April 13, 2012
Thursday, April 12, 2012
Unidentifiable spectral lines
The colors of the universe
"If you point a telescope to the sky, you see spectral lines that are very specific to a certain molecule or atom," said Pavanello. Different moleculesemit photons at different wavelengths, which result in different spectral lines that allow astronomers to determine the chemical composition of stars. But the more these telescopes get accurate and precise, the more spectral lines we see."
"We are at a point in which we see many, many more spectral lines than we can possibly identify, and we don't know what these lines mean," said Pavanello.
Knowing the vibrational levels, and therefore the spectral lines of H3+, will allow astronomers and astro-chemists to sift through the inundation of spectral lines and further identify the elemental composition of objects in space.